@) ADITYA
_.@%glﬁg l

rweemmereey . ENGINEERING COLLEGE (A)

UNIT IV

Assoclation




D\ ADITYA

N
1 T2/LY ENGINEERING COLLEGE (A)

Contents
Problem Definition
—requent Item Set generation
Rule Generation

Compact Representation of frequent item sets
FP-Growth Algorithm.




P\ ADITYA

1 T2/ ENGINEERING COLLEGE (A)

ssoclation: Problem Definition

Market Basket Analysis: A Motivating
Example:

This process analyzes customer buying habits &
finding associations between the different items the

customers place In their “shopping baskets”.

The discovery of such associations can help retailers
develop marketing strategies by gaining Insight into
which items are frequently purchased together by
customers.




Vjommisiay: ENGINEERING COLLEGE (A)a

ssoclation: Problem Definition

Shopping Baskets

[ ET = - E—ﬂ T | —”
milk bread milk bread milk bread
cereal sugar eggs buiter

Customer 1 Customer 2 Customer 3

[

&- Sugar

Market na]yst =

Customer m

eggs

Market basket analysis.




#NADITYA

ADITYA
sy . ENGINEERING COLLEGE (A)

Example

* For iInstance, If customers are buying mi
how likely are they to also buy bread
what kind of bread) on the same trip tg
supermarket? Such iInformation can ledC

Increased sales by helping retailers do
selective marketing and plan their shelf space.




ADITYA

A @i ‘u ;:‘
LADITEV Tl ENGINEERING COLLEGE (A)

Example
Suppose, as a marketing manager of AllElectronics, you

would like to determine which items are frequently
purchased together within the same transactions.

An example of such a rule, mined from the AllElectr
transactional database.

For example, the information that customers who purchase computers also tend
to buy antivirus software at the same time is represented in the following association
rule:

computer — antivirus_software | support = 2%, confidence — 60%]. (6.1)

Rule support and confidence are two measures of rule interestingness. They respec-
tively reflect the usefulness and certainty of discovered rules. A support of 2% for
Rule (6.1) means that 2% of all the transactions under analysis show that computer
and antivirus software are purchased together. A confidence of 60% means that 60% of
the customers who purchased a computer also bought the software. Typically, associa-
tion rules are considered interesting if they satisfy both a minimum support threshold
and a minimum confidence threshold. These thresholds can be a set by users or
domain experts.




(R ADITYA

ENGINEERING COREGE (A)

ssociation Rule Mining

* Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other ite

in the transaction

Market-Basket transactions

TID Iltems
Bread, Milk

Bread, Sugar, Flour, Eggs

Milk, Sugar, Flour, Coke

Bread, Milk, Sugar, Flour

Bread, Milk, Sugar, Coke

Example of Association Rules

{Sugar} — {Flour},
{Milk, Bread} —» {Eggs,Coke},
{Flour, Bread} — {Milk},

Implication means co-occurrenc
not causality!




(ENADITYA

ENGINEERING COLLEGE (A)

| Definition: Frequent Itemset |
temset
— A collection of one or more items

Bread, Milk

* Example: {Milk, Bread, Sugar}

_ _Kitemsat Bread, Sugar, Flour, Eggs
* An itemset that contains k items Milk Sugar, Flour, Coke
E.g., {Milk, Bread, Sugar} — 3 itemset Bread, |\/|i|k, Sugar, Elour

The null set is an itemset that doesnot contain any items.

Bread, Milk, Sugar, Coke

Support count (o)

— Frequency of occurrence of an itemset(No. of transactions that contain a
particular itemset.)

— E.g. o({Milk, Bread, Sugar}) =
Support
— Fraction of transactions that contain an itemset
— E.g. s({Milk, Bread, Sugar}) = 2/5
Frequent Itemset
— An itemset whose support is greater than or equal to a minsup threshold




\Euny TID ltems

DT ENGINEERING COLLEGE (A) _
| Association Rule: refer to the Bread, Milk
probability of customer purchasing one Bread, Sugar, Flour, Eggs

product when he purchases some other Milk, Sugar, Flour, Coke
product.

iy . Bread, Milk, Sugar, Flour
— An implication expression of the form _
X — Y, where X and Y are itemsets Bread, Milk, Sugar, Coke

— Example:

{Milk, Sugar} — {Flour}
Rule Evaluation Metrics
— Support (s)

¢ Fraction of transactions that contain
both X and Y

Support, s (X > Y) = o(XUY) 5

Example:
{Mi]k,_SUQar } — { Flour }

.{_';.'(1\1,/[]]](1 Sugar Flour ) 72

T N 3

=04

Confidence (c)

¢ Measures how often items in 'Y
appear in transactions that
contain X

Confidence, c (X - Y) = a(XUY)
o(X)




#NADITYA

';J

AD

‘gmmmwerey: ENGINEERING COLLEGE (A)

Association Rule Mining Task

* Given a set of transactions T, the goal of
association rule mining is to find all rules having

— support = minsup threshold
— confidence = minconf threshold

* Brute-force approach:
— List all possible association rules
— Compute the support and confidence for each rule

— Prune rules that fail the minsup and minconf
thresholds

—> Computationally prohibitive!




(ENADITYA

ENGINEERING COLLEGE (A)

Mining Association Rules

Example of Rules:
1

Bread, Milk {Milk.Diaper} — {Beer} (s=0.4
Bread. Diaper, Beer, Egas {Milk Beer} — {Diaper} (s=0.4,
Milk, Diaper, Beer, Coke {Diaper,Beer} — {Milk} (s=0.4,
Bread, Milk, Diaper, Beer {Beer} — {Milk,Diaper} (s=0.4
Bread, Milk, Diaper, Coke {Diaper} — {Milk,Beer} (s=0.4,
{Milk} — {Diaper.Beer} (s=0.4, c=

Observations:

= All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

= Rules originating from the same itemset have identical support but
can have different confidence

= Thus, we may decouple the support and confidence requirements

HalzoH Introduction to Data Mining, 2" Edition




A¥N ADITYA

sy . ENGINEERING COLLEGE (A)

Association Rule Mining

* The problem of mining association rules can be reduced to that of nuning frequent
itemsets.

* In general, association rule mining can be viewed as a rwo-step process:
1. Find all frequent itemsets: By definition. each of these itemsets will occur at least as
frequently as a predetermined minimum support count, minsup.

— Generate all itemsets whose support = minsup

Generate strong association rules from the frequent itemsets: By definition. these
rules must satisfy minimum support and minimum confidence.

— Generate high confidence rules from each frequent itemset. where each rule is a
binary partitioning of a frequent itemset

— Frequent itemset generation 1s still computationally expensive




(ENADITYA

ENGINEERING COLLEGE (A)

Association Rules - Example

minsup = 0.5 minconf=0.7

A,B,D
AB.C.D * Find frequent itemsets and association rules satisfying

A minsup and mincont.

Frequent Itemsets:
1-itemsets: {A} support({A})=4/6
{B}  support({B}) =5/6
{C}  support({C})=3/6
2-itemsets: {A.B} support({A.B}) = 3/6
{B.C} support({B.C}) = 3/6
Association Rules:
A—B conf(A—B)=3/4
C—B conf(C—B)=3/3




Given d items, there

are 29 possible
candidate itemsets

C
O
i

(48]

| -

()

-

()
O
=

Q

(Vp)

=

Q
o
.

C

()

>

O

Q

—
L

YAADITYA
ENGINEERING COLLEGE (A)

y= —E%EL’ ‘i‘t\,
| b s e wcaics |




(ZNADITYA

ENGINEERING COLLEGE

A
A

requent Itemset Generation
e Brute-force approach:

— Each itemset in the lattice is a candidate frequent itemset
— Count the support of each candidate by scanning the database

Transactions

Iip Items List of

Bread., Milk Candidates
Bread, Sngar, Flour, Fggos T
Milk, Sugar, Flour, Coke

Bread, Milk, Sugar, Flour T

Bread, Milk, Sugar, Coke
—— W/ o

Match each transaction against every candidate
Complexity ~ O(NMw) => Expensive since M = 2¢ Il
N- No. of transactions

M-No. of candidate itemsets

w- Max. transaction width




(D) ADITYA

wemeeey . ENGINEERING COLLEGE (A)

MNumber of rules

Computational Complexity

e Given d unique items:
— Total number of itemsets = 2¢

— Total number of possible association rules:

= 1|]I|

4]

-]

[*1}

If d=

31[(2} +;(i“fﬂ

6, R=602rules




‘YNADITYA

‘J ENGINEERING COLLEGE (A)

To reduce the computational complexity of
frequent itemset generation:

* Reduce the number of candidates (M)--- Apriori principle
— Complete search: M=2d
— Use pruning techniques to reduce M
* Reduce the number of transactions (N)
— Reduce size of N as the size of itemset increases
 Reduce the number of comparisons (NM)
— Use efficient data structures to store the candidates or transactions

— No need to match every candidate against everv transaction
Reducing Number of Candidates

® Apriori principle:
— If an itemset is frequent, then all of its subsets must also
be frequent

® Apriori principle holds due to the following property
of the support measure:

VX,V (X = Y) = s(X) = s(Y)

— Support of an itemset never exceeds the support of its
subsets
— This is known as the anti-monotone property of support

asizo2 Introduction to Data Mining, 2" Edition 12




(ENADITYA

ENGINEERING COLLEGE (A)
Mining Single Dimensional, Boolean Association rule

fro transactional data bases

Methods:
— Apriori Algorithm

— FP growth algorithm




P\ ADITYA

‘_E,W

sy . ENGINEERING COLLEGE (A)

Apriori Algorithm
Apriori Algorithm: Finding Frequent Itemsets using Candidate Generation

Method:

— Let k=1
— Generate frequent itemsets of length 1

— Repeat until no new frequent itemsets are identified

* Candidate Generation: Generate length (k+1) candidate itemsets
from length k frequent itemsets

e Candidate Pruning: Prune candidate itemsets containing subsets of
length k that are infrequent

. S#p[[))%rt Counting: Count the support of each candidate by scanning
the

* Candidate Elimination: Eliminate candidates that are infrequent
leaving only those that are frequent

Apriori principle:
If an itemset is frequent, then all of its subsets must also be
frequent




D\ ADITYA

L

-mmm ENGINEERING COLLEGE (A)

Working of Apriori Property:
A two-step process is followed, consisting of join and prune actions.
* Suppose the itemsin L, , are listed in an order
* Step 1: self-joining L, ,

insert into C,,

select p.item,, p.item,, ..., p.item,_,, q.item, _,

fromL,,p, L,.,q

where p.item,=q.item,, ..., p.item,_,=q.item,_,, p.item, ;< q.item,_,
* Step 2: pruning

forall itemsets c in C, do

forall (k-1)-subsets s of c do

if (sis notin L, ;) then delete c from C,




DADITYA :
f‘@%&)j@ Scan D for | ltemset | Sup. count | Compare candidate | ltemset | Sup. count

Yy ENGINEERING COLLEGE (A) count of each | 11] 6 support count Witr {11} 6
T 2 7 MINIMU SUppor 1 7
candidate {13 } 6 count { = } p
x| {13} {13}
xample | o |
[I5} 2 {15} 2
1
Generate C, Cs Oy | L,
candidates ltemsel Scan DD for liemset | Sup. count | Compare “Hﬂdldfit"v‘ ltemset | Sup. count
from L, ML 12} ount of each | 111 12] 4 support count with 177 12} 4
— |[I1, 13} canchidate {11, 13} 4 mimmum support (1], 13} 4
11, 14 p—— I 1 count 1,15 2
Transactional Data for an AllElectronics h 1, |5i }”. [5{ 2 Ell ]3{ 4
Branch (12,13} {12, 13} 4 {12, 14} 2
12, 14 12, 14 12,15 2
TID List of item_IDs Eé’ Iii {é Iji % [ J
T100 11,12, 15 (13, 14} {13, 14} 0
T200 12,14 {13, 15} {13, 15} 1
T300 12,13 {14, 15} {14, 15} 0
T400 11,12, 14 —
T500 11,13 C; C, Compare candidate L,
T600 12,13 Generate Cy| Itemset | Scan D for | ltemsel |Sup. count “_'I;P m',t -.?nunt Itemset | Sup. count
Egg i: :2 - candidates ({11, 12, I3}|count of each|[T1, 12, 13} 3 with minimum ML 12.13] 3
1000 Wb 7 from L, candidate support count
7 — |[I1, 12, 15} |—|{11, 12, 15} 2 —|[11, 12,15} 2

The algorithm uses L3 I L3 to generate a candidate set of 4-itemsets, Cs. Although
the join results in {{I1, 2, I3, I5}}, itemset {I1, 12, I3, 15} is pruned because its subset
{12, 13,15} is not frequent. Thus, Cy = ¢, and the algorithm terminates, having found
all of the frequent itemsets.

Generation of the candidate itemsets and frequent itemsets, where the minimum support
count is 2.




The Apriori Algorithm: Example

TID List of Items
T100 1,12, I5
T100 12, 14

T100 12,13

T100 1,12, 14
T100 I1,13

T100 12,13

T100 I1,13

T100 I1,12,13,15
T100 1,12, 13

Consider a database, D, consisting of 9
transactions.

Suppose min. support count required is 2 (i.e.
min_sup =2/9=22 %)

Let minimum confidence required is 70%.

We have to first find out the frequent itemset
using Apriori algorithm.

Then, Association rules will be generated using
min. support & min. confidence.



Step 1: Generating 1-itemset Frequent Pattern

Itemset Sup.Count Compare candidate support Itemset Sup.Count

Scan D for count of 1 6 count with minimum support 11 6
each candidate {1 count {11}

{12} 7 {12} 7

{13} 6 1 m e

{14} 2 {14} 2

{15} 2 {15} 2

C L,

« In the first iteration of the algorithm, each item is a member of the set of candidate.

* The set of frequent 1-itemsets, L, , consists of the candidate 1-itemsets satisfying minimum
support.



Step 2: Generating 2-itemset Frequent Pattern

Itemset [temset Sup. [temset Sup

{11, 12} Count Count
g‘:i?;:fegz {11, 13 Scan D for 1, 12} 4 sﬁ?ﬁﬁiiiﬁﬁ%ﬁ 1, 12} 4
from L, {11, 14} count of each {11, I3} 4 minimum support {11, 13} 4

{11, 15} candidate (11, 14} 1 count {11, 15) 5

{12, 13} {11, 15} 2 {12, 13} 4

{12, 14} {12, 13} 4 {12, 14} 2

{12, 15} {12, 14} 2 {12, 15} 2

{13, 14} {12, I5} 2 L,

{I3, I5} {I3, 14} 0

{14, 15} {13, 15} 1

C2 {14, 15} 0

G,
To discover the set of frequent 2-itemsets, L, , the algorithm uses L; 1 L, to generate a
candidate set of 2-itemsets, C,.
Next, the transactions in D are scanned and the support count for each candidate itemset in C,
is accumulated (as shown in the middle table).
The set of frequent 2-itemsets, L, , is then determined, consisting of those candidate 2-itemsets
in C, having minimum support.
Note: We haven’t used Apriori Property yet.



Step 3: Generating 3-itemset Frequent Pattern

Scan D for
count of each
candidate

Compare candidate

Scan D for Itemset Sup. support count with Itemset Sup
Itemset count of each Count min support count Count
(11, 12, 13} candidate
Ml {11, 12, 13} 2 {11, 12, 13} 2
{11, 12, 15} {11, 12, 15} 7 {11, 12, 15} 2
C; C, L,

* The generation of the set of candidate 3-itemsets, C; , involves use of the Apriori Property.

* In order to find C;, we compute L, 4 L,.




Step 3: Generating 3-itemset Frequent Pattern [Cont.]

(a) Join: Cs = Ly b4 L, = {{I1, 12}, {11, [3}, {11, I5}, {12, I3}, {12, 14}, {12, I5}}
pa{{I1, 12}, {11, I3}, {I1, I5}, {12, I3}, {12, 14}, {12, I5}}
— {{I1, 12, 13}, {11, 12, I5}, {11, I3, I5}, {12, I3, 14}, {12, 13, I5}, {12, 14, [5}).

(b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be
frequent. Do any of the candidates have a subset that is not frequent?

The 2-item subsets of {11, 12, I3} are {11, 12}, {I1, I3}, and {I2, I3}. All 2-item subsets
of {I1, 12, I3} are members of L;. Therefore, keep {11, 12, I3} in Cs.

The 2-item subsets of {11, 12, I5} are {I1, [2}, {11, I5}, and {12, I5}. All 2-item subsets of
{I1,12, 15} are members of L;. Therefore, keep {11, 12, I5} in Cs.

The 2-item subsets of {11, I3, 15} are {11, 13}, {I1, I5}, and {I3, I5}. {I3, 15} is not
a member of [;, and so it is not frequent. Therefore, remove {11, I3, I5} from C;.

The 2-item subsets of {12, 13, 14} are {12, 13}, {12, 14}, and {13, 14}. {I3, 14} is nota
member of [;, and so it is not frequent. Therefore, remove {12, 13, [4} from 3.

The 2-item subsets of {12, 13, 15} are {12, 13}, {12, I5}, and {I3, I5}. {I3, 15} is not
a member of [;, and so it is not frequent. Therefore, remove {12, 13, I5} from Cs.

The 2-item subsets of {12, 14, I5} are {12, 14}, {12, I5}, and {14, 15}. {I4, I5} is nota
member of L,, and so it is not frequent. Therefore, remove {12, [4, I5} from Cs3.

(c) Therefore, C3 = {{I1, 12, 13}, {I1, 12, I5}} after pruning.

Generation and pruning of candidate 3-itemsets, Cs, from L; using the Apriori property.



Step 4: Generating 4-itemset Frequent Pattern

The algorithm uses L3 M L to generate a candidate set of 4-itemsets, Cy. Although

{

d

{

e join results in {{I1,12, I3, [5}}, itemset {I1, 12, I3, 15} is pruned because its subset
2,13, 15} is not frequent. Thus, Cy = ¢, and the algorithm terminates, having found

| of the frequent itemsets.



Step 5: Generating Association Rules from Frequent Itemsets

 Procedure:
* For each frequent itemset “I”, generate all nonempty subsets of L
* For every nonempty subset s of I, output the rule “s = (I-s)” if

support_count(l) / support_count(s) >= min_conf where min_conf is
minimum confidence threshold.

* Back To Example:
We had L = {{I1}, {12}, {13}, {14}, {15}, {I1,12}, {11,13}, {I1,15}, {12,13}, {12,14}, {12,15},
{I1,12,13}, {I1,12,15}}.
* Lets take I = {I1,12,15}.
* Its all nonempty subsets are {I1,12}, {I1,15}, {I12,15}, {I1}, {I2}, {I5}.



Step 5: Generating Association Rules from Frequent Itemsets [Cont.]

* Let minimum confidence threshold is, say 70%.

* The resulting association rules are shown below, each listed with its
confidence.

*RI:T1 N2> 15
* Confidence = sc{I1,12,15} /sc{I1,12} =2/4 = 50%
* R1 is Rejected.

cR2ZIIANIE 212
* Confidence = sc{I1,12,15}/sc{I1,I5} =2/2 =100%
* R2 is Selected.

*R3:I2AI5>11
* Confidence = sc{I1,12,15}/sc{I2,15} =2/2 =100%
* R3 is Selected.



Step 5: Generating Association Rules from Frequent Itemsets
[Cont.]

* R&I1->12715
e Confidence = sc{I1,12,15}/sc{l1} =2/6 =33%
* R4 is Rejected.
« R&:I2->11715
e Confidence = sc{I1,12,I5}/{I2} =2/7 =29%
* R5 is Rejected.
* R6:I5>11 712
e Confidence = sc{lI1,I12,15}/ {I5} =2/2 =100%
* R6 is Selected.
In this way, We have found three strong association rules.



Candidate Generation Procedures

e Brute-force method
F._, X F, Method

F._, XF,_, Method



Candidate Generation: Brute-force method

The brute-force method considers every k-itemset as a potential candidate and then
applies the candidate pruning step to remove any unnecessary candidates whose
subsets are infrequent

Candidate Generation

ltarmsat
{Beer, Braad, Cola}
{Beear, Bread, Diapers}
{Beer, Bread, Eggs)
{Baar, Braad, Milk}

Items

e [{Beer, Cola, Diapars}

= m [{Beer. Cola. Eqggs) Candidate
=er {Beer, Cola, Milk) Pruning

Bread - {Beer, Diapers, Eggs) —

DF:[:‘IE. {Beer, Diapers, Milk} — 'I;"_!mEEt O
lapars [{Beer. Eggs, Milk} {Bre . Diapars, ik}
E-:_:!gs {Braead, Cola, Dhiapers}

Pl [{Bread, Cola, Eggs}

{Bread, Cola, Rilk}
{Braad, Diapers. Eggs)
{Braad, Diapers, MK}
{Bread, Eqggs. Milk}
{Cola, Diapers. Eggs}
{Cola, Diapears, Milk}
{Cala, Eggs, Milk}
iDapers, Eggs, Milk)

Figure 5.6. A brute-force method for generating candidate 3-itemsets.



Candidate Generation: F,_; X F;

Frequent
Z-itemset

ltemset
{Beer, Diapers)
{Bread, Diapers}

{Bread, Milk}
{Diapers, Milk} . . Candidate
Candidate Generation Pruning
ltemset
ltemset
p [LDcerBread, Diapers) » [(Bread, Diapers, Milk}
Frequent {Beer, Diapers, Milk}
1-itemset {Bread, Diapers, Millk}
ltem {Beer, Bread, Milk}
Bear
Bread
Diapers
Mlilke

Figure 5.7. Generating and pruning candidate k-itemsets by merging a frequent (k — 1)-itemset with a
frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.



Apriori Algorithm:
Candidate Generation: F,_; x F,_; Method

=  Merge two frequent (k-1)-itemsets if their first (k-2) items are identical

= F;={ABC ABD ABE.ACD.BCD.BDE,CDE}

Merge(ABC, ABD) = ABCD
Merge(ABC, ABE) = ABCE
Merge(ABD, ABE) = ABDE

Do not merge( ABD, ACD) because they share only prefix of length | instead of
length 2

« L,={ABCD,ABCE.ABDE} is the set of candidate 4-itemsets generated

Apriori Algorithm:
Candidate Pruning

*» LetF;={ABC,ABD,ABE,ACD,BCD.BDE,CDE} be the set of frequent 3-itemsets
« L,={ABCD,ABCE.,ABDE} is the set of candidate 4-itemsets generated
* Candidate pruning

— Prune ABCE because ACE and BCE are infrequent

— Prune ABDE because ADE is infrequent

» After candidate pruning: L, = {ABCD}



Candidate Generation: Fk-1 x Fk-1 Method

Freguent
2=-itamsat
. Itemset
I:Eeer. Diapers) .
{Bread, Diapers} |

[ {Bread, Milk}
| {Diapers, Milk} | Candidate Candidate
Ganaration Pruning
Itemset ' | Itemset
Frequent "{Bread, Diapers, Milk) | | (Bread, Diapers, Mik]
2-itamsel
Itemset

: {Baar, Diapare)

{Bread, Diapers) |
' {Bread, Milk) '
' {Diapers, Milk}

Figure 5.8. Generating and pruning candidate /--itemsets by merging pairs of frequent (£ — 1)-itemsets.

J/B2021 Introduction to Data Mining, 2™ Edition 206




Rule Generation in Apriori Algorithm

* Grven a frequent itemset L. find all non-empty subsets f C L. such that candidate
rule f - L — f satisfies the minimum confidence requirement

— If {A.B.C.D} is a frequent itemset. candidate rules:

ABC —->D ABD —» C ACD - B BCD —- A
D — ABC C — ABD B —» ACD A — BCD
AB - CD AC —- BD AD — BC
CD —- AB BD — AC BC — AD

» If|L| = k. then there are 2¥ — 2 candidate association rules

— (1gnormgL - D and & > L)



Rule Generation in Apriori Algorithm
How to efficiently generate rules from frequent itemsets?

In general. confidence does not have an anti-monotone property

¢(ABC—D) can be larger or smaller than ¢(AB—D)

But confidence of rules generated from the same itemset has an anti-monotone
property
— E.g.. Suppose {A.B.C.D} 1s a frequent 4-itemset:

¢(ABC—D) = ¢(AB—CD) = ¢(A—>BCD)

— Confidence 1s anti-monotone w.r.t. number of 1tems on the RHS of the rule



Rule Generation in Apriori Algorithm

Lattice of rules

Low - -
Confiderfce
Rule ;




Rule Generation for Apriori Algorithm

* Candidate rule is generated by merging two rules that share the same prefix
in the rule consequent

* join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

* Prune rule D=>ABC if its
subset AD=>BC does not have
high confidence




Compact Representation of Frequent [temset

* What happens when you have a large market basket data with
over a hundred items?

* The number of frequent itemsets grows exponentially and this
in turn creates an issue with storage and it is for this purpose
that alternative representations have been derived which
reduce the initial set but can be used to generate all other
frequent itemsets.

* The Maximal and Closed Frequent Itemsets are two such
representations that are subsets of the larger frequent itemset.



Maximal Frequent Itemset
Definition
* Itis a frequent itemset for which none of its immediate supersets are
frequent.
Identification

* Examine the frequent itemsets that appear at the border between the
infrequent and frequent itemsets.

* |ldentify all of its immediate supersets.

* If none of the immediate supersets are frequent, the itemset is maximal
frequent.




Closed Frequent Itemset
Definition:

* An itemset is closed in a data set if there exists no superset that has the same
support count as this original itemset

* It is a frequent itemset that is both closed and its support is greater than or
equal to minsup..

Identification
* First identify all frequent itemsets.
* Then from this group find those that are closed by checking to see if there

exists a superset that has the same sup
is, the itemset is disqualified, butif non

null

Blue- frequent itemsets
thick blue- closed frequent itemsets

thick blue and have the yellow fill- CO AT ECP EEPRCHR <>

maximal frequent itemsets

2 1
abc acd bed

abed 1




FP-growth

* FP-growth (finding frequent itemsets without candidate generation).

* FP-growth employs a divide-and-conquer strategy as follows.
* First, the database is compressed into a FP-tree(frequent pattern tree).

* FP-tree is then divided into a set of projected databases called conditional
databases, each associated with one frequent item.

* Every Conditional database is mined separately so as to generate frequent

patterns.
Transactional Data for an AllElectronics
Branch
TIiD List of item_IDs
T100 1215 The first scan of the database is the same as Apriori, which derives the set of frequent
o o items (1-itemsets) and their support counts (frequencies). Let the minimum support
100 o count be 2. The set of frequent items is sorted in the order of descending support count.
T600 2,13 This resulting set or fist is denoted by L. Thus, we have L ={{I2: 7}, {I1: 6}, {I3: 6},
0o D T 1 (14:2), (15:2)).

Tooo I1,12,13




Support
count

[tem ID , Node-link
A YK
278 -
16| —-f-----
136
412
15121 -

An FP-tree registers compressed, frequent pattern information.

Mining the FP-Tree by Creating Conditional (Sub-)Pattern Bases

Item  Conditional Pattern Base

Conditional FP-tree

Frequent Patterns Generated

I5
14
I3
I1

({12, 11: 1}, {12, 11, I3: 1}}

i
{
{12

2, I1:
[2,11:2

4})

1}, {12: 1))
2}, {12: 2}, {11: 2}

(12: 2, 11: 2)

(
(
(12

12: 2)

12:4,11: 2), (I1: 2)

12:

4)

(12, 15: 2}, {11, I5: 2}, {12, 11, I5: 2}

{
{
{12

[2,14: 2
[2,13: 4
2,11: 4

2}
b, {11, 13: 4}, {12, 11, I3: 2
)



I5 occurs in two FP-tree branches - The paths formed by these branches are (12, 11,
I5: 1) and (12, I1, I3, I5: 1). Therefore, considering I5 as a sufhix, its corresponding two
prefix paths are (12, I1: 1) and (12, 11, 13: 1), which form its conditional pattern base.
Using this conditional pattern base as a transaction database, we build an I5-conditional
FP-tree, which contains only a single path, (I12: 2, 11: 2); 13 is not included because its
support count of 1 is less than the minimum support count. The single path generates
all the combinations of frequent patterns: {12, I5: 2}, {I1, I5: 2}, {12, I1, I5: 2}

For 14, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}},
which generates a single-node conditional FP-tree, (I2: 2}, and derives one frequent
pattern, {12, 14: 2}.

Similar to the preceding analysis, 13’s conditional pattern base is {{I2, 11: 2}, {I2: 2},
{I1: 2}}. Its conditional FP-tree has two branches, (I12: 4, 11: 2) and (I1: 2), as shown
in Figurebelow which generates the set of patterns {{I12, 13: 4}, {I1, 13: 4}, {12, I1, 13: 2}}.
Finally, I1’s conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one
node, (12: 4), which generates one frequent pattern, {12, I1: 4}.

Support
Item ID Cm:““ Node-link null{}
\.‘* | _+ | ‘-_‘_.r'
274 - 12:4 11:2
1114 n

I1:2

The conditional FP-tree associated with the conditional node 13.



	Slide 1: UNIT IV
	Slide 2: Contents
	Slide 3: Association: Problem Definition
	Slide 4: Association: Problem Definition
	Slide 5: Example
	Slide 6: Example
	Slide 7: Association Rule Mining
	Slide 8: Definition: Frequent Itemset
	Slide 9
	Slide 10: Association Rule Mining Task
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Frequent Itemset Generation
	Slide 15: Frequent Itemset Generation
	Slide 16
	Slide 17: To reduce the computational complexity of frequent itemset generation:
	Slide 18: Mining Single Dimensional, Boolean Association rules fro transactional data bases
	Slide 19: Apriori Algorithm
	Slide 20
	Slide 21: Example
	Slide 22: The Apriori Algorithm: Example
	Slide 23: Step 1: Generating 1-itemset Frequent Pattern
	Slide 24: Step 2: Generating 2-itemset Frequent Pattern
	Slide 25: Step 3: Generating 3-itemset Frequent Pattern
	Slide 26: Step 3: Generating 3-itemset Frequent Pattern [Cont.]
	Slide 27: Step 4: Generating 4-itemset Frequent Pattern
	Slide 28: Step 5: Generating Association Rules from Frequent Itemsets
	Slide 29: Step 5: Generating Association Rules from Frequent Itemsets [Cont.]
	Slide 30: Step 5: Generating Association Rules from Frequent Itemsets [Cont.]
	Slide 31: Candidate Generation Procedures
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Rule Generation for Apriori Algorithm
	Slide 40: Compact Representation of Frequent Itemset
	Slide 41: Maximal Frequent Itemset 
	Slide 42: Closed Frequent Itemset 
	Slide 43: FP-growth
	Slide 44
	Slide 45

